Método vectorial: gráfico-> Polígono de velocidad

Analisis ›› Velocidad ››
Parent Previous Next

Mathedemo

Análisis gráfico de velocidad usando polígono


En este apartado anterior se planteo el procedimiento para resolver las ecuaciones vectoriales mediante un procedimiento analítico donde se relacionan nodos de interés o de velocidad desconocida, con nodos de velocidad conocida; en algunos casos era necesario asociar un mismo nodo de velocidad desconocida, con otros dos para poder buscar una solución.


La forma de solucionar dichas ecuaciones puede realizarse mediante trazos vectoriales, cuyo resultado gráfico se le conoce como polígono de velocidades, ya que son gráficas vectoriales de velocidad. Para aplicar esta metodología es necesario disponer del diagrama cinemático del mecanismo con sus medidas reales escaladas y en la posición de análisis, ya que los diagramas vectoriales se obtienen a partir del diagrama cinemático.


Procedimiento


  1. Identifique el eslabón de velocidad conocida.
  2. Establezca una ecuación vectorial que relacione dos puntos de dicho eslabón, calcule la velocidad de articulación $Q$ el cual continúa con la transmisión de movimiento hacia otros nodos.
  3. Identifique un nodo de velocidad dependiente de $Q$ y que llamaremos $P$.
  4. Identifique si el movimiento $P/Q$ es de rotación traslación y la combinación de ambos.
  5. Establezca la ecuación, según sea el caso:
  1. La solución de la ecuación anterior puede ser analítica según se planteó en el apartado anterior, o bien gráfica como se sugiere a continuación:


Figura 1. Solución gráfica al polígono vectorial


Ejemplos:


  1. Mecanismo manivela-corredera


Created with the Personal Edition of HelpNDoc: Easily create EBooks